If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2-16=0
a = 4; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·4·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*4}=\frac{-16}{8} =-2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*4}=\frac{16}{8} =2 $
| y=0,15+400+17.61 | | 6n-4=7n-8 | | 3/n+8=7/n | | -14.9h-19.49=17.7-11.2h+17.57 | | 1/b=-3/(b+2) | | 2(3+x)=7x-9 | | -(2-m)=-(5m+2) | | 4x(x+9)=x+9 | | 6k-8=6k-8 | | 360°=A°+2a°+a°+2a° | | 10(9-9v)=10(v-10)-5v | | 3a-2/2+6=4a | | 4x^2+33x+36=0 | | 4x+4x+(5x-8)+96+(5x+2)=540 | | 4a+2-8a=18 | | -1/6x-17=-18 | | (3x+3)=(5x+1) | | -14.9h–19.49=17.7–11.2h+17.57 | | 5(5+1)=25t-7 | | -12=-2(b-2) | | 7-3(5-a)=5(a-6)-4 | | 3l+4=13 | | 16(4-3m)=96(-m/2+1) | | (2x+8)+(16x-44)+(Y+12)=180 | | X^4+-26x^2+25=0 | | F(5)=2d-5 | | A°+2a°+a°+2a°=360° | | 6/7x-1/4=1/2x-1/8 | | 4m-15=m-15+3m | | 3(x-1)/2=3(x+8)/11 | | 6c+3=c- | | -8x-15+4x+20=-15 |